Overview
This project focuses on implementing automated Continuous Integration (CI) and Continuous Deployment (CD) workflows for both the frontend and backend applications of a web platform using GitHub Actions. The goal is to enhance development efficiency, enforce code quality standards, and streamline deployment to a Kubernetes cluster.
Deliverables
- Frontend CI/CD Pipelines:
- Automate testing, linting, building, and deployment of the frontend application.
- Ensure only code changes in the frontend application trigger workflows.
- Implement conditional job execution to build and deploy only if linting and tests pass.
- Tag Docker images with the Git SHA for traceability.
- Backend CI/CD Pipelines:
- Establish a similar automated workflow for backend application development.
- Enforce code quality checks and test validation before building the application.
- Ensure Kubernetes deployments use the latest tagged Docker image based on the commit SHA.
Prerequisites
- AWS account and CLI configured.
- Terraform installed
- Frontend application code
- Backend application code
- Basic knowledge of kubernetes
Steps to achieving this;
-
Deploying a cluster on EKS service in AWS using terraform
- create a terraform/
- containing
main.tf
which will create;
VPC
resource "aws_vpc" "vpc" {
tags = {
"Name" = "udacity"
}
cidr_block = "10.0.0.0/16"
enable_dns_support = true
enable_dns_hostnames = true
}
# Create an internet gateway
resource "aws_internet_gateway" "igw" {
vpc_id = aws_vpc.vpc.id
}
# Create a public subnet
resource "aws_subnet" "public_subnet" {
vpc_id = aws_vpc.vpc.id
cidr_block = "10.0.1.0/24"
availability_zone = "us-east-1${var.public_az}"
map_public_ip_on_launch = true
tags = {
Name = "udacity-public"
}
}
# Create public route table
resource "aws_route_table" "public" {
vpc_id = aws_vpc.vpc.id
route {
cidr_block = "0.0.0.0/0"
gateway_id = aws_internet_gateway.igw.id
}
tags = {
Name = "public"
}
}
# Associate the route table
resource "aws_route_table_association" "public" {
subnet_id = aws_subnet.public_subnet.id
route_table_id = aws_route_table.public.id
}
# Create a private subnet
resource "aws_subnet" "private_subnet" {
vpc_id = aws_vpc.vpc.id
availability_zone = "us-east-1${var.private_az}"
cidr_block = "10.0.2.0/24"
tags = {
Name = "udacity-private"
}
}
# Create private route table
resource "aws_route_table" "private" {
vpc_id = aws_vpc.vpc.id
tags = {
Name = "private"
}
}
# Associate private route table
resource "aws_route_table_association" "private" {
subnet_id = aws_subnet.private_subnet.id
route_table_id = aws_route_table.private.id
}
# Create EKS endpoint for private access
resource "aws_vpc_endpoint" "eks" {
count = var.enable_private == true ? 1 : 0 # only enable when private
vpc_id = aws_vpc.vpc.id
service_name = "com.amazonaws.us-east-1.eks"
vpc_endpoint_type = "Interface"
security_group_ids = [aws_eks_cluster.main.vpc_config.0.cluster_security_group_id]
subnet_ids = [aws_subnet.private_subnet.id]
private_dns_enabled = true
}
# Create EC2 endpoint for private access
resource "aws_vpc_endpoint" "ec2" {
count = var.enable_private == true ? 1 : 0
vpc_id = aws_vpc.vpc.id
service_name = "com.amazonaws.us-east-1.ec2"
vpc_endpoint_type = "Interface"
security_group_ids = [aws_eks_cluster.main.vpc_config.0.cluster_security_group_id]
private_dns_enabled = true
}
resource "aws_vpc_endpoint" "ecr-dkr-endpoint" {
count = var.enable_private == true ? 1 : 0
vpc_id = aws_vpc.vpc.id
service_name = "com.amazonaws.us-east-1.ecr.dkr"
vpc_endpoint_type = "Interface"
security_group_ids = [aws_eks_cluster.main.vpc_config.0.cluster_security_group_id]
subnet_ids = [aws_subnet.private_subnet.id]
private_dns_enabled = true
}
resource "aws_vpc_endpoint" "ecr-api-endpoint" {
count = var.enable_private == true ? 1 : 0
vpc_id = aws_vpc.vpc.id
service_name = "com.amazonaws.us-east-1.ecr.api"
vpc_endpoint_type = "Interface"
security_group_ids = [aws_eks_cluster.main.vpc_config.0.cluster_security_group_id]
subnet_ids = [aws_subnet.private_subnet.id]
private_dns_enabled = true
}
EKS resources
# Create an EKS cluster
resource "aws_eks_cluster" "main" {
name = "cluster"
version = var.k8s_version
role_arn = aws_iam_role.eks_cluster.arn
vpc_config {
subnet_ids = [aws_subnet.private_subnet.id, aws_subnet.public_subnet.id]
endpoint_public_access = var.enable_private == true ? false : true
endpoint_private_access = true
}
depends_on = [aws_iam_role_policy_attachment.eks_cluster, aws_iam_role_policy_attachment.eks_service]
}
# Create an IAM role for the EKS cluster
resource "aws_iam_role" "eks_cluster" {
name = "eks_cluster_role"
assume_role_policy = jsonencode({
Version = "2012-10-17"
Statement = [
{
Action = "sts:AssumeRole"
Effect = "Allow"
Principal = {
Service = "eks.amazonaws.com"
}
}
]
})
}
# Attach policies to the EKS cluster IAM role
resource "aws_iam_role_policy_attachment" "eks_cluster" {
policy_arn = "arn:aws:iam::aws:policy/AmazonEKSClusterPolicy"
role = aws_iam_role.eks_cluster.name
}
resource "aws_iam_role_policy_attachment" "eks_service" {
policy_arn = "arn:aws:iam::aws:policy/AmazonEKSServicePolicy"
role = aws_iam_role.eks_cluster.name
}
# EKS Node Group
# Track latest release for the given k8s version
data "aws_ssm_parameter" "eks_ami_release_version" {
name = "/aws/service/eks/optimized-ami/${aws_eks_cluster.main.version}/amazon-linux-2/recommended/release_version"
}
resource "aws_eks_node_group" "main" {
node_group_name = "udacity"
cluster_name = aws_eks_cluster.main.name
version = aws_eks_cluster.main.version
node_role_arn = aws_iam_role.node_group.arn
subnet_ids = [var.enable_private == true ? aws_subnet.private_subnet.id : aws_subnet.public_subnet.id]
release_version = nonsensitive(data.aws_ssm_parameter.eks_ami_release_version.value)
instance_types = ["t3.small"]
scaling_config {
desired_size = 1
max_size = 1
min_size = 1
}
# Ensure that IAM Role permissions are created before and deleted after EKS Node Group handling.
# Otherwise, EKS will not be able to properly delete EC2 Instances and Elastic Network Interfaces.
depends_on = [
aws_iam_role_policy_attachment.node_group_policy,
aws_iam_role_policy_attachment.cni_policy,
aws_iam_role_policy_attachment.ecr_policy,
]
lifecycle {
ignore_changes = [scaling_config.0.desired_size]
}
}
// IAM Configuration
resource "aws_iam_role" "node_group" {
name = "udacity-node-group"
assume_role_policy = data.aws_iam_policy_document.assume_role_policy.json
}
resource "aws_iam_role_policy_attachment" "node_group_policy" {
role = aws_iam_role.node_group.name
policy_arn = "arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy"
}
resource "aws_iam_role_policy_attachment" "cni_policy" {
role = aws_iam_role.node_group.name
policy_arn = "arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy"
}
resource "aws_iam_role_policy_attachment" "ecr_policy" {
role = aws_iam_role.node_group.name
policy_arn = "arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly"
}
data "aws_iam_policy_document" "assume_role_policy" {
statement {
effect = "Allow"
actions = ["sts:AssumeRole"]
principals {
type = "Service"
identifiers = ["ec2.amazonaws.com"]
}
}
}
ECR repositories
# ECR Repositories
resource "aws_ecr_repository" "frontend" {
name = "frontend"
image_tag_mutability = "MUTABLE"
force_delete = true
image_scanning_configuration {
scan_on_push = true
}
}
resource "aws_ecr_repository" "backend" {
name = "backend"
image_tag_mutability = "MUTABLE"
force_delete = true
image_scanning_configuration {
scan_on_push = true
}
}
github action user for interacting in pipeline.
# Github Action role
resource "aws_iam_user" "github_action_user" {
name = "github-action-user"
}
resource "aws_iam_user_policy" "github_action_user_permission" {
user = aws_iam_user.github_action_user.name
policy = data.aws_iam_policy_document.github_policy.json
}
data "aws_iam_policy_document" "github_policy" {
statement {
effect = "Allow"
actions = ["ecr:*", "eks:*", "ec2:*", "iam:GetUser"]
resources = ["*"]
}
}
-
outputs.tf
output "frontend_ecr" {
value = aws_ecr_repository.frontend.repository_url
}
output "backend_ecr" {
value = aws_ecr_repository.backend.repository_url
}
output "cluster_name" {
value = aws_eks_cluster.main.name
}
output "cluster_version" {
value = aws_eks_cluster.main.version
}
output "github_action_user_arn" {
value = aws_iam_user.github_action_user.arn
}
-
variables.tf
variable "k8s_version" {
default = "1.25"
}
variable "enable_private" {
default = false
}
variable "public_az" {
type = string
description = "Change this to a letter a-f only if you encounter an error during setup"
default = "a"
}
variable "private_az" {
type = string
description = "Change this to a letter a-f only if you encounter an error during setup"
default = "b"
}
-
providers.tf
provider "aws" {
region = "us-east-1"
}
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "4.55.0"
}
}
}
- run
terraform init
to initialize the repository -
terraform plan
to validate before applying -
terraform apply --auto-approve
to apply without prompt
This will provision our infra
- Run
init.sh
which adds the github-action-user IAM user ARN to the Kubernetes configuration that will allow that user to execute kubectl commands against the cluster.
#!/bin/bash
set -e -o pipefail
echo "Fetching IAM github-action-user ARN"
userarn=$(aws iam get-user --user-name github-action-user | jq -r .User.Arn)
# Download tool for manipulating aws-auth
echo "Downloading tool..."
curl -X GET -L https://github.com/kubernetes-sigs/aws-iam-authenticator/releases/download/v0.6.2/aws-iam-authenticator_0.6.2_linux_amd64 -o aws-iam-authenticator
chmod +x aws-iam-authenticator
echo "Updating permissions"
./aws-iam-authenticator add user --userarn="${userarn}" --username=github-action-role --groups=system:masters --kubeconfig="$HOME"/.kube/config --prompt=false
echo "Cleaning up"
rm aws-iam-authenticator
echo "Done!"
This script will download a tool, add the IAM user ARN to the authentication configuration, indicate a Done status, then it’ll remove the tool.
-
Generate AWS access keys for Github Action user
- Go to AWS console, navigate to the IAM service
- Under users, the
github-action-user
user account should be there - Click the account and go to
Security Credentials
- Under
Access keys
selectCreate access key
- Select
Application running outside AWS
and clickNext
, thenCreate access key
to finish creating the keys - Finally, make sure to copy these keys for storing in Github Secrets
- In the github repository settings, click
secrets
tab, thenactions
, past these keys in the repo secrets
-
Backend CI/CD pipeline
name: Backend CD
on:
push:
branches:
- main
paths:
- 'starter/backend/**'
workflow_dispatch:
jobs:
lint:
name: Lint
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Cache pipenv dependencies
uses: actions/cache@v3
with:
path: ~/.cache/pipenv
key: ${{ runner.os }}-pipenv-${{ hashFiles('starter/backend/Pipfile.lock') }}
restore-keys: |
${{ runner.os }}-pipenv-
- name: Install dependencies
run: pip install pipenv && pipenv install --dev
working-directory: starter/backend
- name: Run lint
run: pipenv run lint
working-directory: starter/backend
test:
name: Test
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: 'pipenv'
- name: Install pipenv
run: curl https://raw.githubusercontent.com/pypa/pipenv/master/get-pipenv.py | python
- run: pipenv install
working-directory: starter/backend
- name: Run tests
run: pipenv run test
working-directory: starter/backend
build-and-push:
name: Build Docker Image
runs-on: ubuntu-latest
needs:
- lint
- test
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
cache: 'pipenv'
- name: Install pipenv
run: curl https://raw.githubusercontent.com/pypa/pipenv/master/get-pipenv.py | python
- run: pipenv install
working-directory: starter/backend
- name: Build Docker image
run: |
docker build
--tag mp-backend:latest
.
working-directory: starter/backend
- name: Set up AWS CLI
uses: aws-actions/configure-aws-credentials@v2
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: us-east-1
- name: Amazon ECR Login
uses: aws-actions/amazon-ecr-login@v1
- name: Tag and Push Docker Image
run: |
docker tag mp-backend:latest ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.us-east-1.amazonaws.com/backend:${{ github.sha }}
docker push ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.us-east-1.amazonaws.com/backend:${{ github.sha }}
deploy:
name: Deploy to EKS
runs-on: ubuntu-latest
needs: build-and-push
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up AWS CLI
uses: aws-actions/configure-aws-credentials@v2
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: us-east-1
- name: Amazon ECR Login
uses: aws-actions/amazon-ecr-login@v1
- name: Set up kubectl
uses: azure/setup-kubectl@v3
with:
version: 'v1.25.0'
- name: Update kubeconfig
run: |
aws eks --region us-east-1 update-kubeconfig --name cluster
- name: Set image in Kubernetes manifests using Kustomize
run: |
kustomize edit set image backend=${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.us-east-1.amazonaws.com/backend:${{ github.sha }}
working-directory: starter/backend/k8s
- name: Deploy to EKS using Kustomize
run: |
kustomize build | kubectl apply -f -
working-directory: starter/backend/k8s
- This runs lint and test jobs in parallel.
- lint checks out the code, sets up Python, installs dependencies using pipenv, and then runs a linting tool to ensure the code adheres to style guidelines
- test runs the test suite to ensure the application functions correctly
- Proceeds to build docker image and push to the backend repo created in ECR.
- Deploy the app code to the cluster using the manifest files present in the
backend/
. - Kustomize manages and overlays YAML files, enabling reusable and environment-specific configurations.
Before pushing this code to the github repository;
- add
AWS_ACCOUNT_ID
to the github secrets
After pushing the code, the workflow should be triggered and run successfully;
- run
kubectl get svc
to get the URL of the backend service -
add the
Backend_URL
to the github repo secrets, frontend app needs it to connect to the backend_api -
Frontend CI/CD pipeline
name: Frontend CD
on:
push:
branches:
- main
paths:
- 'starter/frontend/**'
workflow_dispatch:
jobs:
lint:
name: Lint
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: 'lts/*'
- name: Cache npm dependencies
uses: actions/cache@v3
with:
path: ~/.npm
key: ${{ runner.os }}-node-${{ hashFiles('starter/frontend/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-
- name: Install dependencies
run: npm ci
working-directory: starter/frontend
- name: Run lint
run: npm run lint
working-directory: starter/frontend
test:
name: Test
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: 'lts/*'
- name: Cache npm dependencies
uses: actions/cache@v3
with:
path: ~/.npm
key: ${{ runner.os }}-node-${{ hashFiles('starter/frontend/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-
- name: Install dependencies
run: npm ci
working-directory: starter/frontend
- name: Run tests
run: CI=true npm test
working-directory: starter/frontend
build-and-push:
name: Build Docker Image
runs-on: ubuntu-latest
needs:
- lint
- test
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: 'lts/*'
- name: Cache npm dependencies
uses: actions/cache@v3
with:
path: ~/.npm
key: ${{ runner.os }}-node-${{ hashFiles('starter/frontend/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-
- name: Install dependencies
run: npm ci
working-directory: starter/frontend
- name: Build Docker image
run: |
docker build
--build-arg REACT_APP_MOVIE_API_URL=${{ secrets.BACKEND_URL }}
--tag mp-frontend:latest
.
working-directory: starter/frontend
- name: Set up AWS CLI
uses: aws-actions/configure-aws-credentials@v2
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: us-east-1
- name: Amazon ECR Login
uses: aws-actions/amazon-ecr-login@v1
- name: Tag and Push Docker Image
run: |
docker tag mp-frontend:latest ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.us-east-1.amazonaws.com/frontend:${{ github.sha }}
docker push ${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.us-east-1.amazonaws.com/frontend:${{ github.sha }}
deploy:
name: Deploy to EKS
runs-on: ubuntu-latest
needs: build-and-push
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up AWS CLI
uses: aws-actions/configure-aws-credentials@v2
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: us-east-1
- name: Amazon ECR Login
uses: aws-actions/amazon-ecr-login@v1
- name: Set up kubectl
uses: azure/setup-kubectl@v3
with:
version: 'v1.25.0'
- name: Update kubeconfig
run: |
aws eks --region us-east-1 update-kubeconfig --name cluster
- name: Set image in Kubernetes manifests using Kustomize
run: |
kustomize edit set image frontend=${{ secrets.AWS_ACCOUNT_ID }}.dkr.ecr.us-east-1.amazonaws.com/frontend:${{ github.sha }}
working-directory: starter/frontend/k8s
- name: Deploy to EKS using Kustomize
run: |
kustomize build | kubectl apply -f -
working-directory: starter/frontend/k8s
This does similar to what the backend CI/CD pipeline is doing.
- It referenced the
$Backend_URL
to access the backend_api endpoint. - This workflow should be triggered on push
- Run
kubectl get svc
and open the URL for the frontend service in a browser and the application should be live and displaying the data correctly
Best practices
-
Created a
github-action-user
for enhanced security:
This user is granted only the minimal permissions required to execute the workflow, reducing potential risks. -
Utilized
terraform plan
for validation:
Ensures configurations are error-free before applying changes, allowing for easy rollback in case of failures.
Conclusion
This project demonstrates a modern DevOps approach to managing web application development, emphasizing automation, efficiency, and scalability.
- Faster release cycles with automated workflows.
- Enhanced code quality through linting and test validation.
- Improved traceability and reliability with SHA-tagged Docker images.
- Simplified deployment process to Kubernetes, reducing manual errors.